Name _____

Chapter 9 Minerals of the Earth's Crust

Vocabulary: Number and define each term below in a complete sentence on a separate sheet of paper. (Illustrate those with a *)

Crystal*	Cleavage*	density*	Double Refraction*	
Fluorescence	Hardness	Inorganic*	Luster*	
Mineral	Mineralogist	Mohs Hardness Scale	Nonsilicate mineral	
Phosphorescence	Refraction*	Rock-Forming Mineral	Silicate Mineral	
Streak	Silicon-oxygen Tetrahed	ra		
9.1 What is a Minaral?				

8.1 What is a Mineral?

A. Definition of a mineral:

- 1. _____- not made of living things or the remains of living things
- 2. _____- formed in the Earth; not synthesized by humans
- 3. _____- has a definite shape and volume
- 4. _____- is a single element or compound; can write a chemical formula to describe it
- 5. _____- orderly internal arrangement of atoms
- B. Types of Minerals
 - How many mineral have been identified, how many are common?
 Over _____ minerals have been identified, but fewer than _____ are common and are called rock-forming minerals
 - 2. Silicate Minerals -Contain atoms of ______ and _____, make up 96% of the Earth's crust

-Two examples of silicates: Feldspar and _____ make up 50% of the crust 3. What are _____ minerals classified into?

-Carbonates, Halides, Native Elements, Oxides, Sulfate, and Sulfides -Ex: see page 158, table 9.1

C. Crystalline Structure

1. How do crystals form?

-Crystals form when liquid rock (magma or lava) cools, depending on the conditions that existed determines the _____

- -The longer it has to form, the larger the crystal
 - a. Slow cooling forms large or _____ crystals
 - b. Fast cooling forms small or _____ crystals
 - c. Very fast cooling forms no crystals or a ______ texture

called a _____

3. What are the four types of silicon-oxygen tetrahedras? -Single chain_____

-Double chain--Sheets--Network silicates-

9.2 Identifying Minerals

A. Minerals have certain physical properties that can be used to identify them

- 1. Color- only good for a few minerals, because so many are different colors Ex. ______ is always green, ______ is always blue, Quartz comes in many colors, ______ is always yellow -Not a reliable test!- _____ looks just like gold (called fools gold)
- 2. Luster- describe the way a mineral reflects light from its surface, -luster is usually described as _____ (iron, gold, silver, pyrite) or _____ (doesn't reflect much light, not 'shiny')

-Quartz's luster would be described as _____

-Micas have a ______ luster

-Diamonds have a _____ luster

minerals

-ex	can be gray, green or black but always reddish-brown streak,
metallic minerals gener	ally have a dark streak

- 4. Cleavage and Fracture- describes the way a mineral surfaces. If a mineral doesn't break along a smooth surface then it is known to fracture.
 - -a rough surface is called _____

-a broken surface that looks like wood is called ______

-curved surfaces on a fractured mineral are called ______

-example halite always breaks in ______ and mica along one surface. -tetrahedral sheets such as mica break into _____

5. Hardness- the ability of a mineral to resist being scratched, a very useful tool.

- _____ developed a scale of hardness for minerals; the lowest value was assigned to the softest mineral while the hardest mineral has a value of 10 (_____)

-Mohs Hardness Scale

 is marchess beare			
Mineral	Hardness		
Talc	1		
Gypsum	2		
Calcite	3		
Fluorite	4		
Apatite	5		
Feldspars	6		
Quartz	7		
Topaz	8		
Corundum	9		
Diamond	10		

arranged in layers that held together by weak forces

6. Crystal Shape- the way atoms or molecules come together determines the mineral's crystal shape. There are six basic shapes:

_____ (see page 166)

7. Density- is the amount of matter in a given space, the density of a mineral is always the same, galena will always be more dense than a piece of quartz the same size
 -Formula: ______, measured in grams per cubic centimeter

B. Special Properties of Minerals

- 1. Magnetism- certain minerals, especially magnetite, have magnetic properties that easily make them identifiable
- 2. Fluorescence Calcite usually is white but under fluorescence light it appears red by absorbing ______
- 3. Phosphorescence when a mineral continues to glow after being exposed to
- 4. Double Refraction- when light rays are bent while going through transparent material refraction occurs
 - -Calcite produces double refraction making a ______
- 5. ______-some minerals have unstable nuclei due causing them to release particles and energy- ex. Uranium and Radium
- 5. Chemical Reactions- _____ reacts with HCl (Hydrochloric Acid)